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Abstract 
 

Many system safety analysis (SSA) methods focus only on individual physical component failure. Some human 

reliability analyses (HRA) consider human-machine or human-automation interaction (HAI) in determining system 

failure rates; however, very few SSA methods account for interaction of components in hazard exposure. There is no 

SSA technique that provides the capability to quantify the impact of human/automation reliability on hazard 

exposure risk. The objectives of this study were to enhance the system hazard analysis (SHA) technique by 

introducing the concept of hazard risk bands and human/automation reliability classification using fuzzy sets, and to 

formulate a new risk-reliability score in a three-dimensional analysis space. Fuzzy sets are applicable in the systems 

safety domain as the classification of risk probability and severity are based on linguistic rather than numerical 

variables. The enhanced SHA technique yields a revised final mishap risk index, which is projected based on a 

composite assessment of HAI reliability at the time of system operation. The revised technique also supports broader 

control recommendations. The enhanced method was compared with human factors process failure modes and 

effects analysis (HF-PFMEA), which was considered to be the most similar HRA technique. The enhanced SHA 

approach provides comparable, if not more detailed, results. 
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1. Introduction 
 

1.1. System Safety Analysis Methods 

There are many formal system safety analysis (SSA) techniques documented in the literature (e.g. preliminary 

hazard list (PHL), preliminary hazard analysis (PHA), fault tree analysis (FTA)), which are primarily focused on 

individual physical component failures (e.g., defects, command faults) [1,2]. No existing SSA method provides the 

capability to quantify the impact of human/automation reliability on hazard exposure risk. Unfortunately, these 

methods have not made consideration of system aging, cumulative environment exposure, and degradations in 

fitness-for-duty and skills. Some SSA techniques do provide a basis for prioritizing use of engineering resources to 

control for specific types hazards exposure to equipment, facilities and human targets. For example, failure modes, 

effects, and criticality analysis (FMECA) identifies process failure modes, causes, negative effects, priority of risks, 

and recommended actions. It uses rating scales for quantifying outcome severity and occurrence of hazard exposure. 

FMECA also assigns rankings of likelihood of sensor or test technology success (i.e., the potential for revealing 

failures) and integrates a risk score with the detection ranking to yield a risk priority number (RPN). However, the 

RPN does not account for system aging and degradations in reliability.  

System hazard analysis (SHA) is the only SSA method accounting for hazards due to interactions among 

components. This method is typically applied after a subsystem hazard analysis has mapped all potential piece-part, 

subassembly failure modes [2]. SHA is an inductive method that identifies sources of hazards and mechanisms 

(events) leading to negative outcomes with baseline risk assessment scores and revised scores considering 

recommended controls. The method is rare among formalized SSA techniques in terms of content. 

 

1.2. Human Reliability Analysis Methods  

Human reliability analysis (HRA) is defined as “any method by which human reliability is estimated” [3]. HRA 

plays an important role in many human-automation reliability assessments as part of complex systems. For example, 

astronaut performance is critical to the majority of NASA space missions and the reliability of human task 

performance needs to be estimated for accurate overall system and mission risk assessment. While reliable astronaut 



Kaber and Zahabi 

performance leads to accomplishment of missions, human errors can result in damage to spacecraft and subsystems 

and, ultimately, incomplete missions [4].  

In general, HRA techniques can be classified as the first and second generation [3]. The technique for human 

error prediction (THERP) is perhaps the best known of the first generation HRA methods. THERP classifies human 

errors as omissions or commissions. However, some studies have recommended use of second generation HRA 

methods for analysis of man-machine systems [5]. The most well-known second generation HRA methods include: 

a technique for human error analysis (ATHEANA) and the cognitive reliability and error analysis method 

(CREAM). These methods provide more of a theoretical human information processing basis for estimating task 

error rates; whereas, first generation methods were largely focused on observational data. 

Another classification for HRA methods is quantitative vs. qualitative [6]. Qualitative methods attempt to 

identify the most likely errors while quantitative methods involve procedures to estimate human error probability 

(HEP). An example of quantitative methods is THERP. Another quantitative method is the standardized plant 

analysis risk-human reliability analysis (SPAR-H). It was first developed to estimate HEPs in nuclear power plant 

operations. Qualitative HRA methods include human factors process failure mode and effect analysis (HF-PFMEA) 

and action error analysis (AEA). HF-PFMEA identifies human error types as commission or omission. It considers 

the likelihood of human error (impossible, possible, and highly likely) as well as the consequence severity. It is also 

the only HRA method that is specifically designed for aerospace applications [4], including context-dependent 

information. Although the method supports an initial likelihood and severity assessment for hazard exposure, HRA 

does not involve determining a final risk score based on recommendation/implementation of hazard controls. 

Another qualitative HRA method is AEA, which involves enumeration of different system deviations from nominal 

operations, including actions that are too early, too late, or too long. [7]. The method also involves listing different 

errors in detail, such as actions applied to wrong objects, actions not taken, and actions in wrong order. Although we 

found some studies on advanced AEA [8], unfortunately the method itself is not well-defined in the literature. 

 

1.3. Introduction to Fuzzy Sets 

In classical set theory, an individual is either a member or not a member of a set and set boundaries are defined 

precisely. However, many real-word classification problems cannot be described using classical theory due 

probabilistic states of individuals. Fuzzy set theory allows partial membership of sets and is a more generalized set 

theory. A linguistic variable is defined as, “a variable whose values are words or sentences in a natural or artificial 

language” [9]. In the system safety literature, classifications of likelihood of hazard exposure (e.g., frequent, 

probable, occasional, remote, impossible) and severity of outcomes (e.g., catastrophic, marginal, negligible) and risk 

levels (e.g., unacceptable, undesirable, acceptable with review, acceptable without review) are also based on 

linguistic variables since their values are linguistic rather than numerical. Therefore, these variables can be better 

defined using fuzzy functions. The most common membership functions in fuzzy literature are triangular, 

trapezoidal, and Gaussian functions [10]. A triangular number, which is the simplest fuzzy function, is written by 

𝐴 = (𝑎1, 𝑎2, 𝑎3) notation. The degree or grade of membership of any element x to a fuzzy set is represented by 𝜇𝑥. 

 

1.4. Motivation 

The main goal of HRA methods is to identify HEP. None of the existing HRA techniques consider system reliability 

as a result of age and human-automation interactions (HAI). However, error classifications in HRA methods are 

more detailed than in SSA methods. Risk matrices, such as that included in MIL-STD 882B, are the most common 

tool by which to evaluate hazard exposure but little research has occurred to improve these matrices since their 

development. One limitation of current matrices is a lack of high resolution scales for ratings of severity and 

frequency of hazard exposure. The frequency of exposure scale includes levels of “improbable” (E), “remote” (D), 

“occasional” (C), “probable” (B), and “frequent” (A). The severity scale includes levels of “negligible” (IV), 

“marginal” (III), “critical” (II), and “catastrophic” (I). The overall risk index is numerical and ranges from a value of 

20 (“acceptable without review”) down to a value of 1 (“unacceptable”). Risk categories are defined based on 

threshold values and not overlapping risk bands.  

The objectives of this study were to enhance the existing SHA technique by introducing the concept of 

overlapping hazard risk bands and a reliability classification using fuzzy sets. We also sought to formulate a new 

risk-reliability score in a three-dimensional analysis space considering the likelihood of hazard exposure, severity of 

potential outcomes, as well as levels of human-automation reliability. The organization of this paper follows a 

theoretical human factors research study which includes identification of research contributions, analytical support 

for our claims, and comparison with other existing methodologies. 
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2. Research Contributions 
 

2.1. Overlapping Risk Bands in SSA 

In MIL-STD 882B, risk categories are defined discretely by threshold values. Such certainty of classification of risk 

scores is not logical, based on subjective ratings of severity and frequency of hazard exposure that underlie the 

scores. To address this issue, we proposed the use of triangular fuzzy functions to represent overlapping risk 

categories as part of the assessment method. Based on the hazard risk categories (C) of the military standard, we 

defined fuzzy membership functions (𝐶1, 𝐶2, 𝐶3) and they are presented in Table 1, including range and median 

values. Figure 1a provides a graphical representation of the overlapping risk bands and specific hazards can fall in 

either of the risk functions (see the shaded areas) depending on the grade of membership. Decisions about threshold 

risk values should depend on the analyst’s approach to the risk assessment. For example, if the analyst wants to take 

a conservative approach, any risk value between 5 and 6 would be considered unacceptable (i.e., the hazard would 

belong to 𝐶1). However, in a risky approach, the same hazard risk value might be categorized as undesirable (or 

belonging to 𝐶2). Conservative and risky approaches for all risk bands are shown in Figure 1, plates b and c. 

Table 1: Fuzzy risk categories 

Criterion Unacceptable Undesirable Acceptable with review Acceptable w/out review 
Triangular Fuzzy Number 𝐶1 = (1,1,6) 𝐶2 = (5,7.5,10) 𝐶3 = (9,13.5,18) 𝐶4 = (17,20,20) 

 

 
(a)                                                            (b)                                                         (c) 

Figure 1: (a) Overlapping fuzzy risk bands; (b) Conservative approach; (c) Risky approach 

 
2.2. Reliability Classification 

In order to define a 3D risk-reliability scale, reliability values should be mapped into several classes. The 

classification shown in Table 2 can be used for reliability of man-machine systems [11]. However, “high” (H), 

“medium” (M), and “low” (L) reliabilities are linguistic variables and can be better defined using fuzzy functions. 

Related to this, continuous random variables have extensive use in reliability analysis for description of system 

survival times, system loads, and repair rates. [12]. Since reliability is better defined using continuous functions, 

such as exponential and normal (Gaussian) functions, any fuzzy classifications of reliability should also follow this 

structure. Figure 2 shows reliability categories using fuzzy membership functions. The “low” reliability category 

was defined using a negative exponential function. As the reliability of the system increases, the likelihood of 

having a low reliability will decrease. The “medium” reliability category was defined using a normal distribution. 

As the reliability level of a system approaches a value of 0.7, the system is more likely to have moderate reliability. 

Finally, the “high” reliability category was defined using an exponential function. As the system reliability 

increases, the likelihood of having high reliability will increase. Consequently, this proposed fuzzy classification for 

reliability supports a bathtub-shaped failure curve [12]. Reading from the right of the figure to the left side, the 

initial high failure rate can be attributed to design faults or operator mistakes, leading to decreases in HAI reliability 

(i.e., the decreasing trend of reliability from 1.0 to 0.8). The mid-section of the curve includes the lowest likelihood 

of membership but the most nearly constant failure rate (i.e., reliability ranging from 0.8 to 0.6). Finally, the last part 

of the bathtub shape (at the left side of the figure) is usually caused by system fatigue or component aging, which 

results in a drastic decrease in HAI reliability (i.e., an increase in the likelihood of reliability levels from 0.6 to 0). 

Table 2: Reliability classification 

Category Low Medium High 

Reliability 0.6000 or less 0.6001 to 0.8000 0.8001 or more 
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Figure 2: Fuzzy reliability classification 

 
2.3. A Three-Dimensional Risk-Reliability Space 

The addition of reliability values to SSA allows for definition of a three-dimensional (3D) risk-reliability (R-R) 

modeling space (or location of multiple risk planes along the dimension of system reliability). This model is shown 

in Figure 3 (a). Among other factors, reliability can represent system age. Such 3D analysis spaces can be defined 

for a human operator or automation/robot. The range of severity, frequency and reliability values may vary among 

servers. In addition, the rate of change in anyone dimension relative to another may also vary among servers. 

Referring again to Figure 3(a), following the convention of MIL-STD 882B-E, lower values for severity and 

frequency are considered riskier, and increasing risk occurs with degraded system reliability. This 3D R-R space can 

also be described using fuzzy classification (see Figure 3 (b)). For example, if a hazard probability was estimated to 

be frequent with a degree of membership = 1, its severity was determined as catastrophic with a degree of 

membership = 1, and estimation of a composite HAI reliability level was “low” with the degree of membership = 1, 

then the R-R value for this hazard would be classified as “IAL” (see Point 1 in Figure 3(b)). However, any 

uncertainty in any of the dimensions would lead to a composite degree of membership < 1, which would indicate 

that the R-R value could be categorized, for example, as either “IIBL” or “IAL”, depending on analyst’s approach 

(see Point 2 in Figure 3(b)). Therefore, fuzzy classification of R-R values could lead to recommendation of a 

broader set of potentially appropriate safety controls for each hazard. It is important to note that R-R classification 

can be uni-dimensional, bi-dimensional, or 3D depending on crisp or fuzzy classification of the likelihood of hazard 

exposure, severity of outcomes, and system reliability level. Figure 3(b) shows a scenario in which all dimensions 

are fuzzy. In addition, for simplicity of the graph, we assumed triangular fuzzy functions for all dimensions. 

However, as noted above, reliability can also be described using exponential and normal membership functions. 

 

 
(a)                                                                                  (b) 

Figure 3: (a) A 3D Risk-Reliability analysis space; (b) Fuzzy classification applied to the R-R space 

 
2.4. Risk-Reliability Score 

In order to quantify the 3D R-R space, there is a need to further define the R-R value. In the systems safety 

literature, risk is a two-dimensional construct, which is quantitatively defined as the product of severity and 

frequency. Frequency by definition should represent the number of times system hazard exposure is expected to 

occur. However, the term does not capture the probability of loss given exposure (P(L|E)). Considering Equation 1, 
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the frequency term can be expanded to address the conditional P(L|E). Following the MIL-STD 882B-E convention 

of risk classification (i.e., lower risk is “worse”), the probability component of the equation should be inverted. 

Therefore, the R-R value can be written as Equation 2. For example, if a severity of a hazard is estimated to be 

“catastrophic” and the probability of this hazard is assumed to be “frequent”, then the risk of the hazard (based on 

the MIL-STD-882B) is equal to 1 (with membership in the fuzzy risk category 𝐶1). Assuming a system reliability 

(combined human and automation reliability, which can be serial or parallel) of 0.95 (a “high” (H) reliability 

classification), the overall R-R value can be calculated using Equation 2, which would result in a final value of 0.95. 

(The R-R value for this hazard would be classified as “1AH” in the 3D R-R space.) 

 

FREQ = Exposures / Time * P(L | E)                                                 FREQ = Exposures / Time * (1-Reliability)    (1) 

 

R-R = Severity * FREQ = Severity * (Time / Exposure) * Reliability                          (2) 

 

2.5. Enhanced SHA Method 

Considering the new R-R value, we proposed an enhanced SHA approach to include classification of human error 

types due to degraded capacity (for each specific hazard). The method integrates human reliability/capacity values, 

which should be estimated based on validated cognitive and physical performance measures. The enhanced SHA 

also considers automation reliability values, which should be estimated based on prior mission data or manufacturer 

tests. A composite HAI reliability value can be calculated based on individual server reliabilities and system type. 

An example of the enhanced SHA worksheet is shown in Figure 4.  

 

 

Figure 4: Enhanced SHA worksheet. (Note: TLM = Top level mishaps (taken from a preliminary hazard list); IMRI 

= Initial Mishap Risk Index (based on MIL-STD-882-E); HR = estimated Human Reliability level at stage of system 

operation; AR = estimated Automation/robot Reliability level; SR = the calculated overall System Reliability level 

based on HR, AR and the System Type; R-R = the composite Risk-Reliability score for the system (in the defined 

3D space); FMRI = Final Mishap Risk Index (with a return to reference MIL-STD-882-E). 

 

3. Discussion 

 
3.1. Comparison of Enhanced SHA Approach with HF-PFMEA 

Based on the review of literature on HRA methods, we noted that the objective of such methods is basically to 

calculate HEP. None of the existing techniques, save HF-PFMEA and AEA, consider the severity of hazard 

outcomes along with the probability of exposure as a basis for calculating risk score. Therefore, we identified the 

HF-PFMEA and AEA as the two closest HRA methods to our enhanced SHA approach. However, the AEA method 

was not a well-defined technique; whereas, HF-PFMEA has been identified in HRA guidelines as a method 

specifically designed for aerospace applications. A side-by-side comparison between the worksheet columns of the 

HF-PFMEA and our enhanced SHA approach is shown in Table 3. In general, the enhanced SHA approach provides 

a broader range of analysis capability as compared with the existing second generation HRA tool. 

 

3.2. Advantages and Limitations 

Current assessments of the frequency of system hazard exposure are “fully-loaded” and assume hazard exposure to 

be equal to certain loss. However, if different outcomes (losses) are specified for a single system hazard exposure, 

each outcome should have a separate likelihood estimate. The defined R-R values resolve this issue by capturing 

likelihoods of hazard exposure, degrees of potential loss, and probability of system loss. The values can be used to 

P(L | E) = (1- Reliability) 
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predict system vulnerability levels at future points in time at which degradations in human and/or automation 

reliability might occur. In addition, R-R values can be used to further differentiate hazards with different severities 

of outcome (e.g., catastrophic vs. critical) and support broader control recommendations. For example, the trend of 

human and automation reliability/capacity against frequency of exposure and severity of outcome may be non-

linear; therefore, the trend of R-R value will be non-linear.  

The enhanced SHA approach also has some limitations that might cause difficulties in applying the technique. 

For example, the new method does not provide a structured approach for translating R-R values to hazard controls 

for degraded human or automation states. This issue needs to be addressed in any further revision of the 

methodology. In addition, there is a need to define overlapping ranges of R-R values for fuzzy classification of 

system hazard exposures according to MIL-STD categories (e.g., “unacceptable”). Beyond this, there is a need to 

further validate the integration of fuzzy sets and the SHA approach through analysis of real world applications.  

 

Table 3: Comparison of HF-PFMEA and enhanced SHA approach in terms of analysis content 

Item Section HF-PFMEA Enhanced SHA 

1 TLM No Yes 

2 Hazards Yes (based on guide words and process parameters) Yes 

3 Causes Yes (based on performance shaping factors) Yes 

4 Human error type Yes Yes 

5 Effects Yes (based on the worst effect of errors) Yes 

6 Hazard likelihood Yes (based on the likelihood of the worst effect) Yes 

7 Severity Yes Yes 

8 Initial risk index Yes Yes 

9 Controls Yes Yes 

10 Human reliability Yes (based on likelihood of error) Yes 

11 Automation reliability No Yes 

12 Parallel/series system selection No Yes 

13 System reliability No Yes 

14 Risk-Reliability score No Yes 

15 Final risk index No Yes 
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